

PRECISION FILM RESISTOR - MRS25

FEATURES

- Metal film;
- · Precision resistors in small outlines;
- Low noise:
- Non-flammable;
- Defined pulse loading capabilities;
- · High stability and uniformity characteristics;
- Several packing and taping configurations;
- Different forming styles available;
- Minor tolerance is available (0.5%).

MARKET SEGMENTS AND APPLICATIONS

Industry sector	Application segment	End-user equipment	
		Electrical testers	
	Controls	Power system control	
Industrial		Instruments (measuring)	
muusmai		Surface scanners	
	Security	Electric fence energizer	
	Control/medical	Blood analyzers	
Automotive	Engine Management	Electronic Fuel Injection System	
Consumer	Sound & Vision	Amplifiers, TV	
Consumer	Souria & Vision	Professional audio equipment	

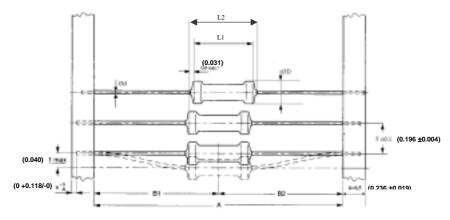
TECHNOLOGY

A homogeneous film of metal alloy is deposited on a hit grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires to the end-caps.

The resistors are coated with a green non-flammable lacquer that provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" e "IEC 68-2-45".

QUICK REFERENCE DATA

DESCRIPTION	MRS25± 1% ⁽²⁾ (E-24 / E-96 series)		
	Cu-lead		
Resistance range	1 Ω to 10M Ω		
Temperature Coefficient:	≤ ± 50 ppm/°C		
Maximum dissipation Tamb = 70°C	0.60W		
Thermal resistance (Rth)	150 K/W		
Limiting voltage (DC or RMS)	350V		
Rated voltage (1)	√Pn x R		
Basic specifications	IEC 60115-1 and 60115-2		
Climatic category (IEC 60068)	55/ 155/ 56		
Stability after:			
Load:	Δ R/Rmax.: ±0.5% + 0.05 Ω		
Climatic tests:	Δ R/Rmax.: ±0.5% + 0.05 Ω		
Resistance to soldering heat	Δ R/Rmax.: ±0.1% + 0.05 Ω		
Short time overload	ΔR/Rmax.: ±0.25% + 0.05Ω		


Note:

¹⁻ Maximum rated voltage is the "Limiting voltage".
2- 0.5% available on request.

MECHANICAL DATA

Axial style

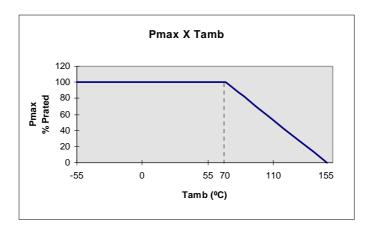
Max. displacement between any two resistors.
 Dimensions in mes.

Table 1.

Product	A	L1max	L2max	φd	Dmax	B1-B2	Mass per 100 units
MRS25	52 +1.5/-0 (2.047 +0.059/-0)	6.5	7.0	0.58 ± 0.05	2.5	± 1.2	22.0g
IVIROZO	26 ± 1.5	(0.256)	(0.276)	(0.023 ±0.002)	(0.098)	(±0.047)	16.0g
	(1.024 ±0.059)						. 0.09

Dimensions in mm / (Inches)

MOUNTING


The resistors are suitable for processing on automatic insertion equipment, cutting and bending machines. A radial taped version economizes space on the PCB. The double kink style offers great advantages for manual insertion improving the mounting stability for the customer. They have a real *snap in* function to fix the resistor in PCB without weakening the connecting leads.

ELECTRICAL CHARACTERISTICS

DERATING

The power that the resistor can dissipate depends on the operating temperature

Maximum dissipation (Pmax) in percentage of rated power as a function of the ambient temperature (Tamb)

APPLICATION INFORMATION

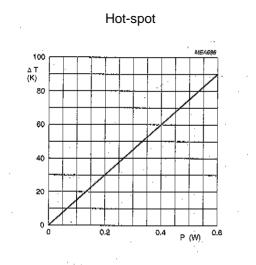


Fig. 1 - Hot spot temperature rise (ΔT) as a function of dissipated power.

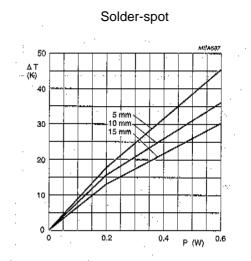


Fig. 2 - Temperature rise (ΔT) at the lead (soldering point) as a function of dissipated power at various lead lengths after mounting.

Note:

The maximum permissible hot-spot temperature is 155°C.

MRS25

PULSE LOADING CAPABILITIES

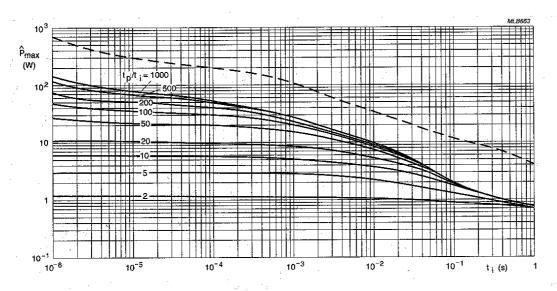


Fig. 3 - Pulse on a regular basis, maximum permissible peak pulse power (^Pmax) as a function of pulse duration (ti).

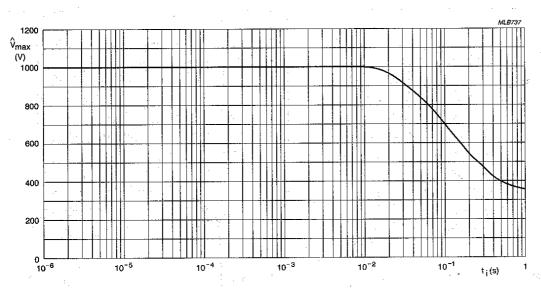


Fig. 4 - Pulse on a regular basis, maximum permissible peak pulse voltage (^Vmax) as a function of pulse duration (ti).

MARKING

The nominal resistance and tolerance are marked on the resistor using five colored bands in accordance with IEC publication 60062 "color code for fixed resistors". There is a sixth red band in order to indicate the temperature coefficient (50 ppm/°C). Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of 1%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

ORDERING INFORMATION

Table 2. Ordering code indicating resistor type and packaging

Table 21 C	tole 2. Ordering code indicating resistor type and packaging								
			ORDERING CODE 23xx xxx xxxxx						
			BAND	OLIER IN AMMO	PACK	BANDOLIER ON REEL			
TYPE	LEAD ∅	TOL		STRAIGHT LEADS					
'''-	mm	%	52	52	26	52			
			(2.047)	(2.047)	(1.024)	(2.047)			
			5000units	1000 units	4000 units	5000 units			
MRS25	Cu 0.58 (Cu 0.023)	1	2322 156 2xxxx	2322 156 1xxxx	2306 156 4xxxx	2322 156 3xxxx			

Dimensions in mm / (Inches)

Note: For formed types see "Formed Types Specification"

ORDERING CODE

- The resistors have a 12 digit ordering code starting with 23.
- The subsequent 6 digits indicate the resistor type and packaging see table 2.
- The remaining 4 digits indicate the resistance value.
 - -The first 3 digits indicate the resistance value.
 - -The last digit indicates the resistance decade in accordance with table 3.

Table 3. Last digit of 12NC

RESISTANCE DECADE	LAST DIGIT
1 to 9.76Ω	8
10 to 97.6Ω	9
100 to 976Ω	1
1 to 9.76kΩ	2
10 to 97.6kΩ	3
100 to 976kΩ	4
1 to 9.76MΩ	5
10ΜΩ	6

Example:

The ordering code for resistor type MRS25 with Cu leads and a value of 1K21 1%, supplied on a bandolier of 1000 units in ammopack, is 2322 156 11212.

MRS25

NAFTA ORDERING INFORMATION - CROSS REFERENCE

NAFTA ORDERING CODES

Table 4. Ordering code indicating resistor type and packaging

Туре	Tol. %	Resistance range	12NC	NAFTA Part Number	Taping	SPQ units	
			2322 156 1xxxx	5053MCxxxxxF08AF5	52 (2.047)	1000; ammopack	
MRS25	± 1	1Ω to $10 M\Omega$	1 Ω to 10M Ω	2322 156 2xxxx	5053MCxxxxxF18AF5	52 (2.047)	5000; ammopack
WING25	T		2322 156 3xxxx	5053MCxxxxxF12AF5	52 (2.047)	5000; reel	
		1 Ω to 1M Ω	2306 156 4xxxx	5053MCxxxxxF26M	26 (1.024)	4000; ammopack	

Dimensions in mm / (Inches)

COMPOSITION OF OHMIC VALUE

The ohmic value is represented by 5 digits; see table 5.

Table 5. Examples of the ohmic value

Value	5 Digits (All Other)
1 Ω	1R000
10 Ω	10R00
100 Ω	100R0
1 ΚΩ	1K000
10 KΩ	10K00
100 KΩ	100K0
1 ΜΩ	1M000

PACKAGING

Bandolier in ammopack

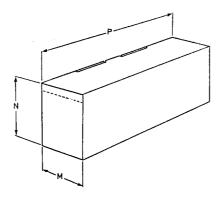


Table 6.

Туре	Quantity	М	N	Р	Bandolier width
MRS25	5000	78 (3.071)	98 (3.858)	260 (10.236)	52 +1.5/-0
	1000	82 (3.228)	28 (1.102)	262 (10.315)	(2.047 +0.059/-0)

Dimensions in mm / (inches)

Bandolier in Reel

Table 7

Туре	Quantity	М	N	Р	Q	V	R	Bandolier Width
MRS25	5000	92 (3.622)	311 (12.244)	311 (12.244)	305 (12.008)	75 (2.953)	86 (3.386)	52 +1.5/-0 (2.047 +0.059/-0)

Dimensions in mm / (Inches)

MRS25

TESTS AND REQUERIMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by IEA and IEAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic Components and under standard atmospheric conditions according to "IEC 60068-1".

In table 8 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068, a short description of the tests procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activate

Table 8. Test procedures and requirements.

IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TESTS	PROCEDURE	REQUEREMENTS
4.4.1		Visual examination		No holes; clean surface; no damage
4.4.2		Dimensions (outline)	Gauge (mm)	Table 1
4.5		Resistance	Applied voltage (+0/-10%): R<10Ω: 0.1V $10Ω \le R < 100Ω: 0.3V \\ 100Ω \le R < 1 kΩ: 1V \\ 1kΩ \le R < 10 kΩ:3V \\ 10 kΩ \le R < 100 kΩ: 10V \\ 100 kΩ \le R < 100 kΩ: 25V \\ R = 1MΩ: 50V$	R - Rnom: max.: ±1%
4.6.1.1		Insulation resistance	Voltage (DC) after 1 minute, metal block method: 500V	R_{ins} min.: 10^4 $M\Omega$
4.7		Voltage proof on insulation	Voltage (RMS) during 1minute, metal block method: 700V.	No breakdown
4.8.4.2		Temperature coefficient	At 20/LCT/20°C (TC x ppm/°C)	≤± 50 ppm/°C
4.12		Noise	"ÎEC publication 60195 "(measured with Quantechequipment): R≤1MΩ R>1MΩ	Max. 0.1μV/V Max. 1.5μV/V
4.13		Short time overload	Room temperature; P=6.25xPn; 5s on 45s off, 10 cycles (V≤2xVmax.)	Δ R/R max. ± 0.25% + 0.05 Ω
4.16	U	Robustness of terminations:		
4.16.2	Ua	Tensile other half of samples	Load 10N; 10s	Number of failures <10x10 ⁻⁶
4.16.3	Ub	Bending half number of samples	Load 5N; 4 x 90°	Number of failures < 10x10 ⁻⁶
4.16.4	Uc	Torsion other half of samples	3 x 360° in opposite directions	no damage Δ R/R max. ± 0.1% + 0.05Ω

IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TESTS	PROCEDURE	REQUEREMENTS
	20(Ta)	Solderability	2s; 235 °C	Good tinning, no damage
4.17	20(Tb)	Solderability (after aging)	8 hours steam or 16 hours 155°C; leads immersed 6mm for 2±0.5s in a solder bath at 235±5° C	Good tinning (≥ 95% covered); no damage
4.18	Tb	Resistance to soldering heat	Thermal shock 3s; 350°C; 6mm from body:	Δ R/R max. ± 0,1% + 0.05 Ω
4.19	(14)Na	Rapid change of temperature	30 minutes at LCT and 30 minutes at UCT; 5 cycles:	Δ R/R max. ± 0.1% + 0.05 Ω
4.22	Fc	Vibration	Frequency 10 to 500Hz; displacement 1.5 mm or acceleration 10g; 3directions; total 6 hours (3 x 2 hours)	no damage Δ R/R max. ± 0.1% + 0.05 Ω
4.23		Climatic sequence:		R_{isol} min. $10^3 M\Omega$
4.23.2	27(Ba)	Endurance at upper category temperature	1000 hours; no load	
4.23.3	30(D)	Damp heat (accelerated) 1 cycle	6 days; 55°C; 95 a 98% R.H.:	
4.23.6	30(D)	Damp heat (accelerated) remaining cycles		Δ R/R max. : ± 0.5 %+0.05 Ω .
4.24.2	3(Ca)	Damp heat (steady state) (IEC)	56 days; 40°C; 90 to 95% RH: loaded with 0.01 Pn (IEC steps: 4 to 100V):	R_{isol} min. $10^3 M\Omega$ $\Delta R/R$ max. $\pm 0.5\% + 0.05\Omega$
4.25.1		Endurance (at 70°C)	1000 hours; loaded with Pn or Vmax; 1.5 hours on and 0.5 hours off:	Δ R/R ma. ± 0.5%+ 0.05 Ω
4.29	45(Xa)	Component solvent resistance	Isopropyl alcohol or H ₂ O followed by brushing in accordance with "MIL 202 F"	No visual damage
See 2 nd amende 60115-1".	ment to "ÏEC	Pulse load		See Figs. 3 and 4